# CRACK ACADEMY 

## ......Driven by Quality, Powered by Professionals

## UNIT CONVERSIONS \& FORMULAS

## METRIC SYSTEM PREFIXES

Yotta $=10^{24}$ Symbol: Y
Zetta $=10^{21}$ Symbol: Z
Exa $=10^{18}$ Symbol: E
Peta $=10^{15}$ Symbol: P
Tera $=10^{12}$ Symbol: T
Giga $=10^{9}$ Symbol: G
Mega $=10^{6}$ Symbol: M
Kilo $=10^{3}$ Symbol: k
Hecto $=10^{2}$ Symbol: h
Deca $=10^{1}$ Symbol: da
Deci $=10^{-1}$ Symbol: d
Centi $=10^{-2}$ Symbol: c
Milli $=10^{-3}$ Symbol: m
Micro $=10^{-6}$ Symbol: $\mu$
Nano $=10^{-9}$ Symbol: n
Pico $=10^{-12}$ Symbol: $p$
Femto $=10^{-15}$ Symbol: f
Atto $=10^{-18}$ Symbol: a
Zepto $=10^{-21}$ Symbol: z
Yocto $=10^{-24}$ Symbol: $y$
UNITS OF LENGTH IN THE METRIC SYSTEM
1,000 millimeters $(\mathrm{mm})=1$ meter
100 centimeters $(\mathrm{cm})=1$ meter
10 decimeters $(\mathrm{dm})=1$ meter
1 decameter $(\mathrm{dam})=10$ meters
1 hectometer $(\mathrm{hm})=100$ meters
1 kilometer $(\mathrm{km})=1000$ meters

## UNITS OF WEIGHT IN THE METRIC SYSTEM

1 gram $=1,000$ milligrams (mg)
1 gram = 100 centigrams (cg)
1 kilogram (kg) = 1,000 grams
1 metric ton $(t)=1,000$ kilograms

## UNITS OF AREA IN THE METRIC SYSTEM

$1 \mathrm{~cm}^{2}=100 \mathrm{~mm}^{2}$
$1 \mathrm{dm}^{2}=100 \mathrm{~cm}^{2}$
$1 \mathrm{~m}^{2}=100 \mathrm{dm}^{2}$
1 Ares (a) = $100 \mathrm{~m}^{2}$
1 hectare $=100$ Ares (a)
1 acre $=4046.86 \mathrm{~m}^{2}$
1 hectare $=2.47105$ acre

UNITS OF VOLUME IN THE METRIC SYSTEM
$1 \mathrm{cc}=1 \mathrm{~cm}^{3}$
1 milliliter $(\mathrm{mL})=1 \mathrm{~cm}^{3}$
1 liter $(\mathrm{L})=1,000$ milliliters $(\mathrm{mL})$
$1 \mathrm{~m}^{3}=1000$ liters
1 hectoliter $(\mathrm{hL})=100$ liters
1 kiloliter $(\mathrm{kL})=1,000$ liters $(\mathrm{L})$

## UNITS OF TIME IN SI SYSTEMS

1 millisecond $=1,000$ microseconds
1 second $=1,000$ milliseconds
1 minute $=60$ seconds
1 hour $=60$ minutes
1 day $=24$ hours

## UNITS OF TEMPERATURE

Centigrade ( ${ }^{\circ} \mathrm{C}$ ) to Fahrenheit ( $\left.{ }^{\circ} \mathrm{F}\right): \mathrm{C}=\frac{5}{9}(\mathrm{~F}-32)$
Fahrenheit to Centigrade ( $\left.{ }^{\circ} \mathrm{C}\right): \mathrm{F}=\left\{\frac{9}{5} \times \mathrm{C}\right\}+32$
$\triangle$ Googleflay
${ }^{\circ}$ A. App Store

## 2-D Figures (Plane Figures)

| $\begin{gathered} \mathrm{S} \\ \text { No. } \\ \hline \end{gathered}$ | Name | Figure | Nomenclature | Area | Perimeter |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | Rectangle |  | $\begin{aligned} & l=\text { length } \\ & \mathrm{b}=\text { breadth } \\ & \mathrm{d}=\sqrt{l^{2}+b^{2}} \end{aligned}$ | 1. Area $=\mathrm{l} \times \mathrm{b}=\mathrm{lb}$ <br> 2. Area of four walls $=$ $2(l+b) h$ | $2(l+b)$ |
| 2. | Square |  | $\begin{aligned} & a \rightarrow \text { side } \\ & d \rightarrow \text { diagonal } \\ & d=a \sqrt{2} \end{aligned}$ | (i) $\mathrm{a} \times \mathrm{a}=\mathrm{a}^{2}$ <br> (ii) $\mathrm{d}^{2} / 2$ | 4a |
| 3. | Triangle (Scalene) |  | a, b and c are three sides of triangle and s is the semi-perimeter, where $s=\left(\frac{a+b+c}{2}\right)$ <br> $b$ is the base and $h$ is the altitude of triangle | (i) $\frac{1}{2} \times \mathrm{b} \times \mathrm{h}$ <br> (ii) $\sqrt{s(s-a)(s-b)(s-c)}$ <br> (Heron's formula) <br> (iii) $\frac{1}{2} \times$ <br> product of sides $\times$ $\sin$ of included angle i.e. $\frac{1}{2} \times a \times b \times \sin \theta$ | $a+b+c=2 s$ |
| 4. | Equilateral triangle |  | $\begin{aligned} & a=\text { side } \\ & h=\text { height or altitude } \\ & h=\frac{\sqrt{3}}{2} a \end{aligned}$ | (i) $\frac{\sqrt{3}}{4} \mathrm{a}^{2}$ | 3 a |
| 5. | Isosceles triangle |  | $\begin{aligned} & \mathrm{a}=\text { equal sides } \\ & \mathrm{b}=\text { base } \\ & \mathrm{h}=\text { height or altitude } \\ & \mathrm{h}=\frac{\sqrt{4 \mathrm{a}^{2}-\mathrm{b}^{2}}}{2} \end{aligned}$ | (i) $\frac{1}{2} \times \mathrm{b} \times \mathrm{h}$ <br> (ii) $\frac{1}{4} \times \mathrm{b} \times \sqrt{4 \mathrm{a}^{2}-\mathrm{b}^{2}}$ | $2 \mathrm{a}+\mathrm{b}$ |

$\triangle$ Googe Play
${ }_{\infty}$ AppStore

| 6. | Right angled triangle |  | $\begin{aligned} & \mathrm{b} \rightarrow \text { base } \\ & \mathrm{h} \rightarrow \text { altitude/ height } \\ & \mathrm{d} \rightarrow \text { diagonal } \\ & \mathrm{d}=\sqrt{\mathrm{b}^{2}+\mathrm{h}^{2}} \end{aligned}$ | $\frac{1}{2} \times \mathrm{b} \times \mathrm{h}$ | $\mathrm{b}+\mathrm{h}+\mathrm{d}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7. | Isosceles right angled triangle |  | $\begin{aligned} & \mathrm{a} \rightarrow \text { equal sides } \\ & \mathrm{d} \rightarrow \text { diagonal } \\ & \mathrm{d}=\mathrm{a} \sqrt{2} \end{aligned}$ | $\frac{1}{2} \mathrm{a}^{2}$ | $2 a+d$ |
| 8. | Quadrilateral |  | AC is the diagonal and $\mathrm{h}_{1}, \mathrm{~h}_{2}$ are the altitudes on AC from the vertices $D$ and $B$ respectively | $\begin{aligned} & \text { Area of } \triangle \mathrm{ADC}+\triangle \mathrm{ABC} \\ & =\frac{1}{2} \times \mathrm{AC} \times\left(\mathrm{h}_{1}+\mathrm{h}_{2}\right) \end{aligned}$ | $A B+B C+C D+A D$ |
| 9. | Parallelogra <br> m |  | $a$ and $b$ are sides adjacent to each other. $\mathrm{h}=$ distance between the parallel sides | $\mathrm{a} \times \mathrm{h}$ | $2(a+b)$ |
| 10. | Rhombus |  | $a=$ length of each side $\mathrm{d}_{1}$ and $\mathrm{d}_{2}$ are the diagonals $\mathrm{d}_{1}=\mathrm{BD}$ $\mathrm{d}_{2}=\mathrm{AC}$ | $\frac{1}{2} \times \mathrm{d}_{1} \times \mathrm{d}_{2}$ | 4a |
| 11. | Trapezium |  | $a$ and $b$ are parallel sides to each other and $h$ is the perpendicular distance between parallel sides | $\frac{1}{2}(a+b) \times \mathrm{h}$ | $A B+B C+C D+A D$ |

Click here to be a part
of our family
$\triangle$ Googe Play

| 12. | Regular hexagon |  | $\mathrm{a}=$ length of each side | $\frac{3 \sqrt{3}}{2} \mathrm{a}^{2}$ | 6 a |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 13. | Regular octagon |  | $\mathrm{a} \rightarrow$ each of equal side | $2 \mathrm{a}^{2}(1+\sqrt{2})$ | 8a |
| 14. | Circle | r | $\begin{aligned} & r \rightarrow \text { radius of the circle } \\ & \pi=22 / 7=3.1416 \\ & \text { (approx.) } \end{aligned}$ | $\pi r^{2}$ | $2 \pi r$ (called as circumference) |
| 15. | Semicircle |  | $\mathrm{r} \rightarrow$ radius of the circle | $\frac{1}{2} \pi r^{2}$ | $\pi r+2 r$ |
| 16. | Quadrant |  | $\mathrm{r} \rightarrow$ radius | $\frac{1}{4} \pi r^{2}$ | $\frac{1}{2} \pi r+2 r$ |
| 17. | Ring or circular path (shaded region) |  | $\mathrm{R} \rightarrow$ outer radius <br> $r \rightarrow$ inner radius | $\pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)$ | $\begin{aligned} & \text { (outer) } \rightarrow 2 \pi R \\ & \text { (inner) } \rightarrow 2 \pi r \end{aligned}$ |
| 18. | Sector of a circle |  | $\begin{aligned} & 0 \rightarrow \text { centre of the } \\ & \text { circle } \\ & r \rightarrow \text { radius } \\ & l \rightarrow \text { length of the arc } \\ & \theta \rightarrow \text { angle of the sector } \\ & l=2 \pi r\left(\frac{\theta}{360^{\circ}}\right) \end{aligned}$ | (i) $\pi r^{2} \frac{\theta}{360^{\circ}}$ <br> (ii) $\frac{1}{2} r \times l$ | $1+2 r$ |


| 19. | Segment of a circle |  | $\theta \rightarrow$ angle of the sector $r \rightarrow$ radius <br> $\mathrm{AB} \rightarrow$ chord <br> ACB $\rightarrow$ arc of the circle | Area of segment ACB (minor segment) $=$ $\mathrm{r}^{2}\left[\frac{\pi \theta}{360^{\circ}}-\frac{\sin \theta}{2}\right]$ | $2 \mathrm{r}\left[\frac{\pi \theta}{360^{\circ}}+\sin \frac{\theta}{2}\right]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

## 3-D Figures (solids)

| $\begin{gathered} \text { S } \\ \text { No. } \end{gathered}$ | Name | Figure | Nomenclature | Volume | Curved/ <br> Lateral <br> Surface <br> Area | Total Surface Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | Cuboid |  | $\begin{aligned} & l=\text { length } \\ & b=\text { breadth } \\ & h=\text { height } \end{aligned}$ | Lbh | $2(1+b) h$ | $2(\mathrm{lb}+\mathrm{bh}+\mathrm{hl})$ |
| 2. | Cube |  | $\mathrm{a}=$ edge/ side | $\mathrm{a}^{3}$ | $4 a^{2}$ | $6 \mathrm{a}^{2}$ |
| 3. | Right circular cylinder |  | $r=$ radius of base. <br> $\mathrm{h}=$ height of the cylinder | $\pi r^{2} \mathrm{~h}$ | $2 \pi r h$ | $2 \pi r(h+r)$ |
| 4. | Right circular cone |  | $\begin{aligned} & \mathrm{r}=\text { radius } \\ & \mathrm{h}=\text { height } \\ & l=\text { slant height } \\ & l=\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}} \end{aligned}$ | $\frac{1}{3} \pi r^{2} h$ | Mrl | $\pi \mathrm{r}(\mathrm{l}+\mathrm{r})$ |

$\triangle$ Google Plav

| 5. | Right triangula r prism |  | $h=$ height <br> Area of base $=B$ <br> Perimeter of base $=P$ | $\mathrm{B} \times \mathrm{h}$ | $\mathrm{P} \times \mathrm{h}$ | $\mathrm{P} \times \mathrm{h}+2(\mathrm{~B})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6. | Right pyramid |  | $h=$ height <br> $I=$ slant height <br> Area of base $=B$ <br> Perimeter of base $=P$ | $\frac{1}{3} \times \mathrm{B} \times \mathrm{h}$ | $\frac{1}{2} \times \mathrm{P} \times 1$ | $\frac{1}{2} \times P \times l+B$ |
| 7. | Sphere |  | $\mathrm{r}=$ radius | $\frac{4}{3} \pi r^{3}$ | $4 \pi r^{2}$ |  |
| 8. | Hemisphere |  | $\mathrm{r}=$ radius | $\frac{2}{3} \pi r^{3}$ | $2 \pi r^{2}$ | $3 \pi r^{2}$ |
| 9. | Spherical shell |  | $\begin{aligned} & \mathrm{r}=\text { inner radius } \\ & \mathrm{R}=\text { outer radius } \end{aligned}$ | $\frac{4}{3} \pi\left[R^{3}-r^{3}\right]$ |  | $4 \pi\left[\mathrm{R}^{2}+\mathrm{r}^{2}\right]$ |
| 10. | Frustum of a cone |  |  | $\frac{\pi}{3} \mathrm{~h}\left(\mathrm{r}^{2}+\mathrm{Rr}+\mathrm{R}^{2}\right)$ | $\pi(r+R) 1$ | $\begin{aligned} & \pi(\mathrm{r}+\mathrm{R}) \mathrm{l}+ \\ & \pi\left[\mathrm{R}^{2}+\mathrm{r}^{2}\right] \end{aligned}$ |

Click here to be a part
of our family

Googep Play
${ }_{a}$ App Store

