CRACK ACADEMY

.....Driven by Quality, Powered by Professionals

UNIT CONVERSIONS & FORMULAS

METRIC SYSTEM PREFIXES

- Yotta = 10^{24} Symbol: Y
- Zetta = 10^{21} Symbol: Z
- $Exa = 10^{18} \text{ Symbol: E}$
- Peta = 10^{15} Symbol: P
- Tera = 10^{12} Symbol: T
- Giga = 109 Symbol: G
- $Mega = 10^6$ Symbol: M
- $Kilo = 10^3$ Symbol: k
- Hecto = 10² Symbol: h
- Deca = 10^1 Symbol: da
- Deci = 10^{-1} Symbol: d
- Centi = 10^{-2} Symbol: c
- $Milli = 10^{-3}$ Symbol: m
- Micro = 10^{-6} Symbol: μ
- Nano = 10⁻⁹ Symbol: n
- Pico = 10^{-12} Symbol: p
- Femto = 10^{-15} Symbol: f
- Atto = 10^{-18} Symbol: a
- Zepto = 10^{-21} Symbol: z
- Yocto = 10^{-24} Symbol: y

UNITS OF LENGTH IN THE METRIC SYSTEM

- 1,000 millimeters (mm) = 1 meter
- 100 centimeters (cm) = 1 meter
- 10 decimeters (dm) = 1 meter
- 1 decameter (dam) = 10 meters
- 1 hectometer (hm) = 100 meters
- 1 kilometer (km) = 1000 meters

UNITS OF WEIGHT IN THE METRIC SYSTEM

- 1 gram = 1,000 milligrams (mg)
- 1 gram = 100 centigrams (cg)
- 1 kilogram (kg) = 1,000 grams
- 1 metric ton (t) = 1,000 kilograms

UNITS OF AREA IN THE METRIC SYSTEM

- $1 \text{ cm}^2 = 100 \text{ mm}^2$
- $1 \text{ dm}^2 = 100 \text{ cm}^2$
- $1 \text{ m}^2 = 100 \text{ dm}^2$
- $1 \text{ Ares (a)} = 100 \text{ m}^2$
- 1 hectare = 100 Ares (a)
- $1 \text{ acre} = 4046.86 \text{ m}^2$
- 1 hectare = 2.47105 acre

UNITS OF VOLUME IN THE METRIC SYSTEM

- $1 \text{ cc} = 1 \text{ cm}^3$
- 1 milliliter (mL) = 1 cm^3
- 1 liter (L) = 1,000 milliliters (mL)
- $1 \text{ m}^3 = 1000 \text{ liters}$
- 1 hectoliter (hL) = 100 liters
- 1 kiloliter (kL) = 1,000 liters (L)

UNITS OF TIME IN SI SYSTEMS

- 1 millisecond = 1,000 microseconds
- 1 second =1,000 milliseconds
- 1 minute = 60 seconds
- 1 hour = 60 minutes
- 1 day = 24 hours

UNITS OF TEMPERATURE

- Centigrade (°C) to Fahrenheit (°F): $C = \frac{5}{9}$ (F 32)
- Fahrenheit to Centigrade (°C): $F = {\frac{9}{5} \times C} + 32$

2-D FIGURES (PLANE FIGURES)

S No.	Name	Figure	Nomenclature	Area	Perimeter
1.	Rectangle	d b	$l = length$ $b = breadth$ $d = \sqrt{l^2 + b^2}$	 Area=l × b = lb Area of four walls = 2(l+b)h 	2 (l + b)
2.	Square		$a \rightarrow side$ $d \rightarrow diagonal$ $d = a\sqrt{2}$	(i) $a \times a = a^2$ (ii) $d^2/2$	4a
3.	Triangle (Scalene)	$ \begin{array}{c} a \\ b \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	a, b and c are three sides of triangle and s is the semi-perimeter, where $s = \left(\frac{a+b+c}{2}\right)$ b is the base and h is the altitude of triangle	(i) $\frac{1}{2} \times b \times h$ (ii) $\sqrt{s(s-a)(s-b)(s-c)}$ (Heron's formula) (iii) $\frac{1}{2} \times product\ of\ sides \times sin\ of\ included\ angle$ i.e. $\frac{1}{2} \times a \times b \times sin\theta$	a + b + c = 2s
4.	Equilateral triangle		$a = side$ $h = height or altitude$ $h = \frac{\sqrt{3}}{2} a$	$(i)\frac{\sqrt{3}}{4}a^2$	3a
5.	Isosceles triangle	$ \begin{array}{c} a \\ h \\ h \\ b \end{array} $	$a = \text{equal sides}$ $b = \text{base}$ $h = \text{height or altitude}$ $h = \frac{\sqrt{4a^2 - b^2}}{2}$	(i) $\frac{1}{2}$ × b × h (ii) $\frac{1}{4}$ × b × $\sqrt{4a^2 - b^2}$	2a + b

6.	Right angled triangle	h b	$b \rightarrow base$ $h \rightarrow altitude/height$ $d \rightarrow diagonal$ $d = \sqrt{b^2 + h^2}$	$\frac{1}{2}$ × b × h	b + h + d
7.	Isosceles right angled triangle	a d	$a \rightarrow \text{equal sides}$ $d \rightarrow \text{diagonal}$ $d = a\sqrt{2}$	$\frac{1}{2}a^2$	2a + d
8.	Quadrilateral	$\begin{bmatrix} b & b_1 & b_2 \\ h_2 & b \end{bmatrix}$	AC is the diagonal and h_1 , h_2 are the altitudes on AC from the vertices D and B respectively	Area of $\triangle ADC + \triangle ABC$ = $\frac{1}{2} \times AC \times (h_1 + h_2)$	AB + BC + CD + AD
9.	Parallelogra m		a and b are sides adjacent to each other. h = distance between the parallel sides	a×h	2(a + b)
10.	Rhombus		$a = length of each side$ d_1 and d_2 are the diagonals $d_1 = BD$ $d_2 = AC$	$\frac{1}{2}$ × d_1 × d_2	4a
11.	Trapezium	$A \xrightarrow{D \xrightarrow{b \longrightarrow c} c} B$	a and b are parallel sides to each other and h is the perpendicular distance between parallel sides	$\frac{1}{2}(a+b) \times h$	AB + BC + CD + AD

12.	Regular hexagon	a a a	a = length of each side	$\frac{3\sqrt{3}}{2}a^2$	6a
13.	Regular octagon	a a a a a	a → each of equal side	$2a^{2}(1+\sqrt{2})$	8a
14.	Circle	r	$r \rightarrow radius$ of the circle $\pi = 22/7 = 3.1416$ (approx.)	πr²	2πr (called as circumference)
15.	Semicircle		$r \rightarrow radius$ of the circle	$\frac{1}{2}\pi r^2$	$\pi r + 2r$
16.	Quadrant	r	r → radius	$\frac{1}{4}\pi r^2$	$\frac{1}{2}\pi r + 2r$
17.	Ring or circular path (shaded region)	R	$R \rightarrow$ outer radius $r \rightarrow$ inner radius	π (R ² – r ²)	(outer) → $2\pi R$ (inner) → $2\pi r$
18.	Sector of a circle	₩ O B B	$0 \rightarrow$ centre of the circle $r \rightarrow$ radius $l \rightarrow$ length of the arc $\theta \rightarrow$ angle of the sector $l = 2\pi r \left(\frac{\theta}{360^{\circ}}\right)$	(i) $\pi r^2 \frac{\theta}{360^\circ}$ (ii) $\frac{1}{2} r \times l$	l + 2r

Segment of a circle $\theta \to \text{angle of the sector} \\ r \to \text{radius} \\ AB \to \text{chord} \\ ACB \to \text{arc of the circle} \\ R \to \text{arc of the circle} \\ Area of segment ACB \\ (minor segment) = \\ r^2 \left[\frac{\pi \theta}{360^{\circ}} - \frac{\sin \theta}{2} \right] \\ 2r \left[\frac{\pi \theta}{360^{\circ}} + \sin \frac{\theta}{2} \right]$

3-D FIGURES (SOLIDS)

S No.	Name	Figure	Nomenclature	Volume	Curved/ Lateral Surface Area	Total Surface Area
1.	Cuboid	h	l = length b = breadth h = height	Lbh	2 (l + b)h	2(lb + bh + hl)
2.	Cube	a	a= edge/ side	a^3	4a ²	6a ²
3.	Right circular cylinder	h h	r = radius of base. h = height of the cylinder	πr²h	2πrh	2πr (h + r)
4.	Right circular cone	l h	r = radius h = height <i>I</i> =slant height $I = \sqrt{r^2 + h^2}$	$\frac{1}{3}\pi r^2 h$	Пrl	$\pi r (l+r)$

5.	Right triangula r prism	h Base	h = height Area of base =B Perimeter of base =P	$B \times h$	P×h	P×h + 2 (B)
6.	Right pyramid	Slant height	h = height /= slant height Area of base =B Perimeter of base =P	$\frac{1}{3} \times B \times h$	$\frac{1}{2} \times P \times I$	$\frac{1}{2} \times P \times I + B$
7.	Sphere	r -	r = radius	$\frac{4}{3}\pi r^3$	4πr ²	4πr²
8.	Hemi- sphere	<i>r</i> .	r = radius	$\frac{2}{3}\pi r^3$	2πr²	$3\pi r^2$
9.	Spherical shell	R	r = inner radius R = outer radius	$\frac{4}{3}\pi [R^3 - r^3]$		$4\pi [R^2 + r^2]$
10.	Frustum of a cone	h l		$\frac{\pi}{3}h\left(r^2+Rr+R^2\right)$	$\pi (r + R) l$	$\pi (r + R) l + \pi [R^2 + r^2]$

